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To evaluate the role of deer in regulating the abundance of the deer tick (Ixodes dammini)
we attempted to treat with acaricide, but eventually removed, about 70 percent of deer from
Great Island, Cape Cod, Massachusetts. Deer were captured in box traps, a corral, an en-
tanglement net, and with rifle-fired tranquilizer. Failure of these attempts, combined with inef-
fective acaricides, led us to deer destruction begun in fall 1982. Larval tick abundance on mice
was monitored before and after deer removal. We concluded that deer removal, to the extent
accomplished, did not markedly reduce the abundance of the tick.
Reduced abundance of deer may not result in reduced abundance of immature ticks if deer

removal follows the period of adult tick feeding, or if intensity of infestation per deer in-
creases, or if other mammals substitute as suitable hosts. Reduced tick abundance may be
delayed if unattached immature ticks survive more than one year.

INTRODUCTION

Small rodents harbor numerous immature deer ticks (Ixodes dammini) [1-4]
whereas white-tailed deer (Odocoileus virginianus) seem to be the main hosts for the
adult stage of this tick in New England [2,3,5-7]. The importance of the white-
footed mouse (Peromyscus leucopus) derives from its own abundance in that region
and from its apparent attractiveness as a host. Nevertheless, the abundance of the
tick may be independent of this particular host [8]. Other rodents (especially
sciurids) serve as hosts to immatures, as do some insectivores, lagomorphs, car-
nivores, artiodactyles (especially deer), and even birds [3,4]. This notably broad host
range of immature ticks contrasts with the restricted host range of adults. Deer are
most heavily infested, although carnivores as well may harbor adult ticks [2,3].
Nevertheless, the typically greater density of deer and greater density of adult ticks
per deer suggests that deer may be critically important hosts for the adult stage.

This apparent host specificity on the part of adult I. dammini may provide a point
of vulnerability that could be exploited in efforts to reduce populations of the tick.
Accordingly, we determined whether abundance of deer determines the density of
the deer tick. In particular, we sought to reduce the availability of deer in a location
in which I. dammini was abundant and to document an anticipated reduction in the
abundance of this tick.
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METHODS

Study Sites

Our study was undertaken on Great Island in West Yarmouth, Massachusetts,
(41037"N, 70016"W), a 240 ha. island connected to southern Cape Cod by a narrow
causeway and bordered to the west, south, and east by Lewis Bay, Nantucket
Sound, and the Atlantic Ocean (Fig. 1). The long, narrow causeway on to the island,
which reduced ease of access by deer, made this an ideal site for this study. An oak-
pine forest covers most of the island interior, with beach grass, poison ivy, and
deciduous brush around the perimeter and causeway. Numerous small and medium-
sized mammals and at least 30 resident white-tailed deer inhabited the island. Be-
tween 100 and 200 human summer residents occupied 27 houses interspersed around
the island. Deer ticks and deer have been abundant for at least ten years and the in-
cidence of Lyme disease has approached 6-8 cases per year.
Nantucket Island, Massachusetts, 40 km south of Great Island, served as a non-

intervention area for comparison. Deer and deer ticks were also abundant there and
Lyme disease and human babesiosis were well documented.

Measures of Tick Abundance

Relative density of larval and nymphal I. dammini was estimated by regularly
trapping small mammals from which ticks were removed and later identified and
counted. Small mammals were live-captured using oat- and cotton-baited
Longworth traps placed in 7 x 7 grid patterns. Traps at each grid were placed 7.6 m
apart, an interval which ensured that most mammals within the grid area en-
countered a trap during each trapping period. Trap locations were marked and held
constant throughout the study. Five 49-trap grids (G,L,M,P,S) (Fig. 1) were each
trapped about monthly from April through September during 1981, 1982, and 1983.
Each trapping session lasted two days; traps were set in late afternoon and were
checked during the morning for two days thereafter. Captured mammals were
transported to a field laboratory where they were identified, weighed, sexed, ear-
tagged (Fingerling Fish Tags; Salt Lake Stamp Co., Salt Lake City, UT), and
promptly released at the point of capture. Ectoparasites were removed (using
forceps) and stored in 70 percent ethanol for later identification. Mammals recap-
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FIG. 1. Map showing Cape Cod,
Massachusetts, and location of Great
Island, plus detail of Great Island

kL-e7_,/showing locations of mouse-trapping
grids (G,L,M,P,S), island regions

Nantucket Sound (I,JI,JII), roads, and corral.
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tured on the second day of each trapping session were similarly released at the point
of capture.
To reduce error in our estimates of tick abundance resulting from microhabitat

differences, the five trapping grids were located at widespread locations which
spanned the range of habitat types. For this reason, estimates were solely based on
samples taken from the white-footed mouse, the most frequently trapped and most
heavily infested small mammal.
The abundance of mice was estimated during the three years under study. Monthly

samples from closely spaced traps arranged in a grid pattern permitted estimates of
the number of mice from complete enumeration [9]. Relative mouse abundance was
compared by calculating the minimum number alive [10].

Small mammal trapping on Nantucket Island was undertaken as described above
except that traps were placed in lines every four to six weeks from May through
September at two sites.

Deer Capture and Treatment

In an effort to reduce the success of adult ticks in attaching to deer, we attempted
to capture and tranquilize these animals and externally apply acaricide or repellent
during the adult questing season. Use of systemic treatment was impractical because
of the inability to control dosage and the possibility of inadvertent human consump-
tion. In fall 1982 we obtained permission to tranquilize deer in order to topically ap-
ply Amitraz (Tactic, Boots Co., Ltd) or Tetrachlorvinphos impregnated discs
(Rabon Cattle Ear Tags, Diamond Shamrock Corp.) placed in both ears. Color-
coded streamers were also attached to both ears to aid in later field identification.
Our estimates of the number of deer were facilitated by individual identification and
by counts during the capture effort.
Deer were captured using four methods: (i) baited box traps, (ii) an entrapment

corral, (iii) entrapment nets, and (iv) rifle-fired tranquilizer.
i. Baited Box Traps Eight 3.7 m x 1.2 m x 1.2 m wooden box traps [11] with

two trip-wire released doors were periodically operated during fall through spring
1981-82. Over about 225 trap-days, three deer were trapped of which two were tran-
quilized, tagged, and released (one deer, injured in confinement, was euthanized).
All deer were captured in late winter when food was most scarce, even though trap-
ping periodically occurred from early fall through spring.

ii. Entrapment Corral Modeled after the African "boma" used to herd and
contain ungulates, an entrapment corral was constructed in fall 1981 at a narrow
neck of the island (Fig. 1). Nylon netting (2.54 cm mesh, 3 m high) and opaque
plastic sheeting were hung from posts encircling a .05 hectare forested area. Two
spreading guide walls converged on each of two entrances. These "funnels" were de-
signed to direct deer into the corral in advance of a coordinated drive team. Once in-
side, the entrance would be closed, and the deer immobilized with rifle-fired tran-
quilizer, then treated and released.
On 17 October and 7 November 1981 as many as 90 volunteers participated in

four drives. The drivers walked slowly in line, each making noise and counting deer
seen hiding or passing through the advancing line. Sections of the island were walked
so that deer were progressively driven toward the corral.

Eight of 18 deer were entrapped on the first drive. All showed signs of extreme ex-
haustion (open-mouthed breathing, apparent hyperthermia); one yearling male was
unable to stand. Frantic movement produced tears in the sheet and eventually the

699



netting. All deer except for the incapacitated animal escaped. This acidotic animal
was treated and released.
For the next drive, the corral was reinforced with bailed hay stacked 1.5 m high

and drivers walked more slowly. None of eight deer, however, entered the corral.
One deer, showing signs of acidosis, was treated, tagged, and released as before (and
was found dead a few months later).

iii. Entrapment Net A third deer capture technique utilized entrapment nets
into which deer were driven. This technique has been successful in the capture of
deer and elk in southwestern U.S. [Snyder W: personal communication]. Notched
poles (2 cm x 2 cm x 3 m) leaning in opposing pairs supported hanging nets (20 cm
sq mesh, 2.4 m high, 30 m long) placed in a series. A 210 m net line was thereby
established near the old corral site on 30 October 1982. Eighteen volunteers walked,
as in prior deer drives, from the tip of region II toward the net. Seven of nine deer
were driven to the vicinity of the net but were not entangled. A capture team
member drove into the net one deer which was bodily restrained, tranquilized,
tagged, and released.

iv. Rifle-Fired Tranquilizer The fourth capture technique used a tranquilizer-
loaded dart, fired from a rifle while spotlight-searching from a vehicle at night. A
modified 22-caliber rifle (Palmer Chemical and Equipment Co., Douglasville, GA)
was used to fire "Cap-chur" darts loaded with Etorphine hydrochloride (M.99,
American Cyanamid), xylazine (Rompum, Haver Lockhart), or ketamine hydro-
chloride (Ketaset, Bristol Laboratories). Radio-telemetry transmitters were attached
to some darts to aid in locating darted deer. We slowly searched by truck for deer
standing within 40 m of the road, beginning at dusk and into the night. During ap-
proximately 80 search-hours in winter-spring 1982 we successfully darted, captured,
and tagged nine deer (Table 1).
Deer Remvoal and Census

Because few deer were treated with acaricide and treatment occurred after the fall
1981 period of adult activity, we anticipated no impact on that year's adult feeding.
The difficulty of deer capture and the questionable efficacy of acaricidal treatment
led us to conclude that deer removal by killing constituted the only feasible method
of reducing the availability of deer as hosts for ticks.

Accordingly, on 12 and 18 October of 1982, officials from the Massachusetts
Division of Fisheries and Wildlife removed 13 deer from Region I, using high-
powered rifles and spotlights. An additional five deer were removed in January and
April 1983. To estimate the percentage of the deer herd removed and amount of
host-availability days ticks were denied, we relied on four measures of deer abun-
dance: nighttime spotlight counts, deer drives, daytime sightings, and counts of deer
removed.

Nighttime spotlight counts were made at least monthly from a slowly moving
truck, using a 300,000 candlepower spotlight. A standard route covering all island
roads (Fig. 1) was driven at five mph, while observers slowly scanned the woods
watching for eye-shine. Daytime sightings were made by R. Wilcox, Superintendent
of Great Island, or by other employees who noted time, place, and, when possible,
identity of all deer seen during the course of their work. Many of these animals
could be individually recognized, either by their distinguishing colored ear tags, or
by peculiarities of appearance and behavior. Deer drives, described above, were de-
signed to survey inaccessible areas and to substantiate results from other methods.
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TABLE 1
Estimated Deer Abundance and Known Deer Removed in Region I

of Great Island, Massachusetts, 1981-1983

Census Method
Estimated

Deer Spotlight Daytime Deer Maximum
Date Drive Census Sighting Removed Abundance

Summer 81 18-20 (20)
17 Oct. 81 18 18
14 Feb. 82 -2a 16
Summer 82 (16-18) 18
12 Oct. 82 -6
17 Oct. 82 -7
20 Oct. 82 0 2 3
27 Oct. 82 0 3 5
19 Nov. 82 5 6-7 7
16 Dec. 82 3 4-6 8
10 Jan. 83 5 NA 8
11 Jan. 83 -3
24 Feb. 83 0 4-5 6
14 Apr. 83 5 6-7 -2 5

aAccidental deaths

RESULTS

We estimated that 30-35 deer inhabited all of Great Island prior to deer removal,
of which 16-18 were in Region I (Table 1). Following the October removal of 13
deer, a nighttime spotlight survey revealed no deer, and we estimated a maximum
population of two to three. Thus, we calculate an initial deer reduction of at least 70
percent in Region I. Monthly surveys and daytime sightings indicated a gradual in-
crease in deer during early winter; consequently on 10 January 1983, three addi-
tional deer were removed from Region I, thereby maintaining the estimated popula-
tion at three to five. A similar increase was observed toward spring, and two more
deer were removed on 14 April 1982.

Estimates of tick density were derived by counting ticks on mice. Mean larvae per
mouse was similar in 1981 and 1982, but appeared to have increased at three of the
five grids in 1983 (Fig. 2); however, fewer mice were present in that year than in
previous years. Thus, this apparent increase in relative larval density converted to an
overall decrease in total tick abundance. Indeed, total larvae per grid decreased from
1982 to 1983 at all grids except P, where little or no deer reduction had occurred
(Fig. 3). Analysis of variance that modeled seasonal trend, trap-grid, and year in-
teractions demonstrated that the number of larvae was not statistically different
among the three years. We conclude that larval abundance may have decreased, but
that such an effect was minimal.
Mean nymphs per mouse similarly appeared to be constant for all grids combined

in 1981 and 1982 (Fig. 4). But nymphs declined in 1983, both in mean per host (Fig.
4) and in total abundance (Fig. 5).

Observations on tick density on Nantucket Island indicated that no changes had
occurred during the study period (Table 2). Because the traps were set in lines rather
than grids, comparable estimates of mouse abundance and total ticks could not be
calculated.
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DISCUSSION

Effective reduction in the availability of deer hosts to L dammini would be
followed by reduced abundance of larval ticks in the event that deer serve as essen-
tial hosts for the adult stage. We believed that we had markedly reduced deer
availability during the winter of 1982-1983 and had anticipated a consequent effect
on larval abundance during 1983. No effect upon nymphal abundance was an-

ticipated until the summer of 1984. Our results do not conform to these expecta-
tions. Although abundance of larvae seemed less in 1983 than in previous years, the
difference did not approach the anticipated magnitude. Furthermore, the observed
decline in nymphal abundance was not expected.
There may have been fewer total larval I. dammini attached to mice in 1983 than

in 1982 or 1981 but the difference is too small to be significant. Two problems com-
plicate analysis: an unexplained paucity of mice as well as fewer nymphs on mice in
1983 relative to previous years. Paucity of mice would result in increased relative
density of ticks per mouse, as observed. In addition, each mouse in a reduced
population might cover a larger range more thoroughly than before, thereby ac-
cumulating more ticks per mouse, and this is consistent with our observations. Thus,
marginally reduced total abundance of larval L dammini may merely represent an

apparent effect due to changes in the number of mice. Paucity of nymphs further
complicates analysis. We know of no environmental factors that can account for
this reduction. Indeed, parallel observations on nearby Nantucket Island
demonstrated larval as well as nymphal constancy throughout this period.

TABLE 2
Larval and Nymphal I. dammini on Mice Trapped
at Two Nantucket Island Sites During 1981-1983

X( SE) Ticks per Mouse
No.

Year Mice Larvae Nymphs

1981 88 4.94 A 0.97 1.44 0.29
1982 41 4.66 A 0.88 1.66 -i- 0.37
1983 33 4.88 i 0.80 1.24 + 0.40
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Failure to accomplish the anticipated reduction in abundance of larval ticks
following deer removal may be explained as follows: (a) intervention occurred
relatively late in the adult season and too few deer were removed, (b) an increased
relative density of ticks per deer compensated for the reduced number of deer, (c)
other mammals were used as hosts by adult ticks, and (d) attached larvae include a
cohort from previous years. We now consider each of these hypotheses.
Adult tick activity generally begins during September/October [1,3,5; personal

observation] and deer removed in this study during October already had engorging
adults. However, a substantial number of adults continue questing into December
and are again active during early spring. While some adults undoubtedly fed prior to
deer removal, we estimate that the intervention was in effect roughly 80 percent of
the total tick questing-days of the 1982-83 adult season. We furthermore estimate
that by reducing deer abundance to about 70 percent of previous levels during most
of this period, we should have reduced the number of available-host days by roughly
50 percent. Corresponding reduction in larval abundance could have been recog-
nized but was not observed.

It may be that deer range farther at low densities than at high densities. Thus, to a
degree, reduced abundance of deer would result in increased tick attachment per
deer. Of course, if deer density were reduced sufficiently, the tick-scanning capacity
of each deer would be exceeded and adult ticks would fail to attach to hosts. If other
mammals are important hosts for adult L dammini, then our deer removal would
have reduced the available-host days by less than estimated. The only animals likely
to serve as major hosts for adult I. dammini on Great Island are foxes (no feral dogs
are present). Foxes are typically less abundant than deer, though Great Island has an
unusually large fox population (fall estimates average from 8-12). In this setting,
foxes could represent a significant factor in adult tick feeding.

If non-attached larval L dammini survive one or more years, then reduced deposi-
tion of eggs would not be manifest in reduced larval abundance until two or more
years after deer removal.
Although our deer removal effort failed to demonstrate that abundance of deer

limits density of I. dammini, indirect evidence for this relationship continues to be
persuasive. That is, the tick is abundant solely where deer are abundant, and adult I.
dammini generally most heavily infest deer. We shall continue to monitor tick
populations in the study sites.

In our experimental study, we attempted to develop non-destructive methods for
reducing availability of deer as hosts to I. dammini, but these efforts failed.
Removal of deer remained our sole practical recourse, and this may be an effective
method for protecting inhabitants of presently infested locations against Lyme dis-
ease. Of course, the efficacy of this measure has not conclusively been established.
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